Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Primary infection with virus can stimulate a vigorous cytotoxic T cell response. The magnitude of the antigen-specific component versus the bystander component of a primary T cell response remains controversial. In this study, we have used tetrameric major histocompatibility complex–peptide complexes to directly visualize antigen-specific cluster of differentration (CD)8+ T cells during the primary immune response to Epstein-Barr virus (EBV) infection in humans. We show that massive expansion of activated, antigen-specific T cells occurs during the primary response to this virus. In one individual, T cells specific for a single EBV epitope comprised 44% of the total CD8+ T cells within peripheral blood. The majority of the antigen-specific cells had an activated/memory phenotype, with expression of human histocompatibility leukocyte antigen (HLA) DR, CD38, and CD45RO, downregulation of CD62 leukocyte (CD62L), and low levels of expression of CD45RA. After recovery from AIM, the frequency of antigen-specific T cells fell in most donors studied, although populations of antigen-specific cells continued to be easily detectable for at least 3 yr.

Original publication

DOI

10.1084/jem.187.9.1395

Type

Journal article

Journal

The Journal of Experimental Medicine

Publisher

Rockefeller University Press

Publication Date

04/05/1998

Volume

187

Pages

1395 - 1402