Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Antibiotics are a modifiable iatrogenic risk factor for the most common human nosocomial fungal infection, invasive candidiasis, yet the underlying mechanisms remain elusive. We found that antibiotics enhanced the susceptibility to murine invasive candidiasis due to impaired lymphocyte-dependent IL-17A- and GM-CSF-mediated antifungal immunity within the gut. This led to non-inflammatory bacterial escape and systemic bacterial co-infection, which could be ameliorated by IL-17A or GM-CSF immunotherapy. Vancomycin alone similarly enhanced the susceptibility to invasive fungal infection and systemic bacterial co-infection. Mechanistically, vancomycin reduced the frequency of gut Th17 cells associated with impaired proliferation and RORγt expression. Vancomycin's effects on Th17 cells were indirect, manifesting only in vivo in the presence of dysbiosis. In humans, antibiotics were associated with an increased risk of invasive candidiasis and death after invasive candidiasis. Our work highlights the importance of antibiotic stewardship in protecting vulnerable patients from life-threatening infections and provides mechanistic insights into a controllable iatrogenic risk factor for invasive candidiasis.

Original publication

DOI

10.1016/j.chom.2022.04.013

Type

Journal article

Journal

Cell host & microbe

Publication Date

07/2022

Volume

30

Pages

1020 - 1033.e6

Addresses

Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy & Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA; Institute of Immunology & Immunotherapy, Institute of Microbiology & Infection, University of Birmingham, Birmingham, B15 2TT, UK. Electronic address: r.drummond@bham.ac.uk.

Keywords

Animals, Humans, Mice, Bacteria, Candida albicans, Iatrogenic Disease, Vancomycin, Granulocyte-Macrophage Colony-Stimulating Factor, Interleukin-17, Anti-Bacterial Agents, Immunotherapy, Candidiasis, Invasive, Th17 Cells, Coinfection