Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

We have constructed a recombinant defective adenovirus that expresses functional murine IFN-gamma-inducible protein-10 (IP-10) chemokine (AdCMVIP-10). Injection of AdCMVIP-10 into s.c. tumor nodules derived from the CT26 murine colorectal adenocarcinoma cell line displayed some antitumor activity but it was not curative in most cases. Previous studies have shown that injection of similar s. c. CT26 tumor nodules with adenovirus-encoding IL-12 (AdCMVIL-12) induces tumor regression in nearly 70% of cases in association with generation of antitumor CTL activity. AdCMVIP-10 synergizes with the antitumor effect of suboptimal doses of AdCMVIL-12, reaching 100% of tumor eradication not only against injected, but also against distant noninjected tumor nodules. Colocalization of both adenoviruses at the same tumor nodule was required for the local and distant therapeutic effects. Importantly, intratumoral gene transfer with IL-12 and IP-10 generated a powerful tumor-specific CTL response in a synergistic fashion, while both CD4 and CD8 T cells appeared in the infiltrate of regressing tumors. Moreover, the antitumor activity of IP-10 plus IL-12 combined gene therapy was greatly diminished by simultaneous in vivo depletion of CD4+ and CD8+ T cells but was largely unaffected by single depletion of each T cell subset. An important role for NK cells was also suggested by asialo GM1 depletion experiments. From a clinical point of view, the effects of IP-10 permit one to lower the required gene transfer level of IL-12, thus preventing dose-dependent IL-12-mediated toxicity while improving the therapeutic efficacy of the elicited antitumor response.

Original publication

DOI

10.4049/jimmunol.164.6.3112

Type

Journal article

Journal

Journal of immunology (Baltimore, Md. : 1950)

Publication Date

03/2000

Volume

164

Pages

3112 - 3122

Addresses

Departments ofMedicine and Genetics, Facultad de Medicina, Universidad de Navarra, Pamplona, Spain.

Keywords

Killer Cells, Natural, T-Lymphocytes, CD4-Positive T-Lymphocytes, CD8-Positive T-Lymphocytes, Cell Line, Tumor Cells, Cultured, Cell-Free System, Animals, Mice, Inbred BALB C, Humans, Mice, Mice, Nude, Defective Viruses, Adenoviridae, Colonic Neoplasms, Growth Inhibitors, Vaccines, DNA, Chemokines, CXC, Antineoplastic Agents, Interleukin-12, Viral Vaccines, Immunotherapy, Adoptive, Injections, Intralesional, Gene Transfer Techniques, Lymphocyte Activation, Dose-Response Relationship, Immunologic, Recombination, Genetic, Drug Synergism, Genetic Vectors, Female, Chemokine CXCL10, Interferon-gamma