Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Anti-CTLA-4 monoclonal antibodies (mAb) that block the interaction of CTLA-4 with CD80 and CD86 such as tremelimumab and ipilimumab are currently being tested in the clinic for cancer treatment exploiting their properties to de-repress tumor-specific cellular immunity. Addition of the fully human anti-CTLA-4 (tremelimumab) to cultures of human T cells with allogenic dendritic cells (DCs) did not increase proliferation. Magnetic bead-mediated elimination of CD4(+) CD25(+) regulatory T cells (T(reg)) before setting up those alloreactive cultures also largely failed to increase primary proliferation. In contrast, predepletion of CD4(+) CD25(+) T(reg) and culture in the presence of tremelimumab synergistically resulted in increased proliferation and DC:T-cell aggregation. These effects were much more prominent in CD4 than in CD8 T cells. The synergy mechanism can be traced to enhanced CTLA-4 expression in effector cells as a result of T(reg) elimination, thereby offering more targets to the blocking antibody. Human T cells and allogenic DCs (derived both from healthy donors and advanced cancer patients) were coinjected in the peritoneum of Rag2(-/-) IL-2Rγ(-/-) mice. In these conditions, tremelimumab injected intravenously did not significantly enhance alloreactive proliferation unless T(reg) cells had been predepleted. Synergistic effects in vivo were again largely restricted to the CD4 T-cell compartment. In addition, T(reg) depletion and CTLA-4 blockade synergistically enhanced specific cytotoxicity raised in culture against autologous EBV-transformed cell lines. Taken together, these experiments indicate that tremelimumab therapy may benefit from previous or concomitant T(reg) depletion.

Original publication

DOI

10.1002/ijc.25681

Type

Journal article

Journal

International journal of cancer

Publication Date

07/2011

Volume

129

Pages

374 - 386

Addresses

Biochemistry Department, Clínica Universidad de Navarra, Pamplona, Spain.

Keywords

Dendritic Cells, T-Lymphocytes, Cells, Cultured, Animals, Mice, Transgenic, Humans, Mice, Antigens, CD, Immunologic Factors, Antibodies, Blocking, Antibodies, Monoclonal, Cell Transplantation, Cell Proliferation, T-Lymphocytes, Regulatory, CTLA-4 Antigen, Antibodies, Monoclonal, Humanized