Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Therapy for cancer can be achieved by artificially stimulating antitumor T and natural killer (NK) lymphocytes with agonist monoclonal antibodies (mAb). T and NK cells express several members of the TNF receptor (TNFR) family specialized in delivering a costimulatory signal on their surface. Engagement of these receptors is typically associated with proliferation, elevated effector functions, resistance to apoptosis, and differentiation into memory cells. These receptors lack any intrinsic enzymatic activity and their signal transduction relies on associations with TNFR-associated factor (TRAF) adaptor proteins. Stimulation of CD137 (4-1BB), CD134 (OX40), and glucocorticoid-induced TNFR (GITR; CD357) promotes impressive tumor-rejecting immunity in a variety of murine tumor models. The mechanisms of action depend on a complex interplay of CTL, T-helper cells, regulatory T cells, dendritic cells, and vascular endothelium in tumors. Agonist mAbs specific for CD137 have shown signs of objective clinical activity in patients with metastatic melanoma, whereas anti-OX40 and anti-GITR mAbs have entered clinical trials. Preclinical evidence suggests that engaging TNFR members would be particularly active with conventional cancer therapies and additional immunotherapeutic approaches. Indeed, T-cell responses elicited to tumor antigens by means of immunogenic tumor cell death are amplified by these immunostimulatory agonist mAbs. Furthermore, anti-CD137 mAbs have been shown to enhance NK-mediated cytotoxicity elicited by rituximab and trastuzumab. Combinations with other immunomodulatory mAb that block T-cell checkpoint blockade receptors such as CTLA-4 and PD-1 are also promising.

Original publication

DOI

10.1158/1078-0432.ccr-12-2065

Type

Journal article

Journal

Clinical cancer research : an official journal of the American Association for Cancer Research

Publication Date

03/2013

Volume

19

Pages

1044 - 1053

Addresses

Centro de Investigación Médica Aplicada, and Clinica Universidad de Navarra, Pamplona, Navarra, Spain. imelero@unav.es

Keywords

Killer Cells, Natural, Animals, Humans, Neoplasms, Receptors, Tumor Necrosis Factor, Antibodies, Monoclonal, Immunotherapy, Lymphocyte Activation