Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

CD69 is an early activation marker on the surface of T lymphocytes undergoing activation by cognate antigen. We observed intense expression of CD69 on tumor-infiltrating T-lymphocytes that reside in the hypoxic tumor microenvironment and hypothesized that CD69 could be, at least partially, under the control of the transcriptional hypoxia response. In line with this, human and mouse CD3-stimulated lymphocytes cultured under hypoxia (1% O2) showed increased expression of CD69 at the protein and mRNA level. Consistent with these findings, mouse T lymphocytes that had recently undergone hypoxia in vivo, as denoted by pimonidazole staining, were more frequently CD69+ in the tumor and bone marrow hypoxic tissue compartments. We found evidence for HIF-1α involvement both when using T-lymphocytes from inducible HIF-1α-/- mice and when observing tumor-infiltrating T-lymphocytes in mice whose T cells are HIF-1α-/-. Direct pro-transcriptional activity of HIF-1α on a newly identified hypoxia response element (HRE) found in the human CD69 locus was demonstrated by ChIP experiments. These results uncover a connection between the HIF-1α oxygen-sensing pathway and CD69 immunobiology.

Original publication

DOI

10.1080/2162402x.2017.1283468

Type

Journal article

Journal

Oncoimmunology

Publication Date

01/2017

Volume

6

Addresses

Immunology and Immunotherapy Department, Center for Applied Medical Research (CIMA) and Instituto de Investigación Sanitaria de Navarra (IdISNA), Pamplona, Spain.