Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

: Multiple lines of evidence indicate a critical role of antigen cross-presentation by conventional BATF3-dependent type 1 classical dendritic cells (cDC1) in CD8-mediated antitumor immunity. Flt3L and XCL1, respectively, constitute a key growth/differentiation factor and a potent and specific chemoattractant for cDC1. To exploit their antitumor functions in local immunotherapy, we prepared Semliki Forest Virus (SFV)-based vectors encoding XCL1 and soluble Flt3L (sFlt3L). These vectors readily conferred transgene expression to the tumor cells in culture and when engrafted as subcutaneous mouse tumor models. In syngeneic mice, intratumoral injection of SFV-XCL1-sFlt3L (SFV-XF) delayed progression of MC38- and B16-derived tumors. Therapeutic activity was observed and exerted additive effects in combination with anti-PD-1, anti-CD137, or CTLA-4 immunostimulatory mAbs. Therapeutic effects were abolished by CD8β T-cell depletion and were enhanced by CD4 T-cell depletion, but not by T regulatory cell predepletion with anti-CD25 mAb. Antitumor effects were also abolished in BATF3- and IFNAR-deficient mice. In B16-OVA tumors, SFV-XF increased the number of infiltrating CD8 T cells, including those recognizing OVA. Consistently, following the intratumoral SFV-XF treatment courses, we observed increased BATF3-dependent cDC1 among B16-OVA tumor-infiltrating leukocytes. Such an intratumoral increase was not seen in MC38-derived tumors, but both resident and migratory cDC1 were boosted in SFV-XF-treated MC38 tumor-draining lymph nodes. In conclusion, viral gene transfer of sFlt3L and XCL1 is feasible, safe, and biologically active in mice, exerting antitumor effects that can be potentiated by CD4 T-cell depletion. SIGNIFICANCE: These findings demonstrate that transgenic expression of sFLT3L and XCL1 in tumor cells mediates cross-priming of, and elicits potent antitumor activity from, CD8 T lymphocytes, particularly in combination with CD4 T-cell depletion.

Original publication

DOI

10.1158/0008-5472.can-18-0933

Type

Journal article

Journal

Cancer research

Publication Date

12/2018

Volume

78

Pages

6643 - 6654

Addresses

Division of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, and Instituto de Investigación Sanitaria de Navarra (IdISNA), Pamplona, Spain.

Keywords

Dendritic Cells, T-Lymphocytes, CD4-Positive T-Lymphocytes, CD8-Positive T-Lymphocytes, Animals, Mice, Semliki forest virus, Membrane Proteins, Chemokines, C, Immunotherapy, Cross-Priming, Genetic Vectors, Tumor Microenvironment