Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Radiotherapy has been used for more than a hundred years as a local tumor treatment. The occurrence of systemic antitumor effects manifesting as regression of tumors outside of the irradiated field (abscopal effect) was occasionally observed but deemed too rare and unpredictable to be a therapeutic goal. This has changed with the advent of immunotherapy. Remarkable systemic effects have been observed in patients receiving radiotherapy to control tumors that were progressing during immune checkpoint blockade, stimulating interest in using radiation to overcome primary and acquired cancer resistance to immunotherapy. Here, we review the immunological mechanisms that are responsible for the ability of focal radiation to promote antitumor T cell responses that mediate tumor rejection and, in some cases, result in systemic effects.

Original publication

DOI

10.1016/j.it.2018.06.001

Type

Journal article

Journal

Trends in immunology

Publication Date

08/2018

Volume

39

Pages

644 - 655

Addresses

Division of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain; Department of Radiation Oncology, University Hospital of Navarra, Pamplona, Spain; Co-first authors.

Keywords

T-Lymphocytes, Animals, Humans, Neoplasms, Neoplasm Metastasis, Immunotherapy, Combined Modality Therapy, Radiotherapy, Tumor Burden, Lymphocyte Activation, Apoptosis