Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Cancer immunotherapy has revolutionized oncology practice. However, current protein and cell therapy tools used in cancer immunotherapy are far from perfect, and there is room for improvement regarding their efficacy and safety. RNA-based structures have diverse functions, ranging from gene expression and gene regulation to pro-inflammatory effects and the ability to specifically bind different molecules. These functions make them versatile tools that may advance cancer vaccines and immunomodulation, surpassing existing approaches. These technologies should not be considered as competitors of current immunotherapies but as partners in synergistic combinations and as a clear opportunity to reach more efficient and personalized results. RNA and RNA derivatives can be exploited therapeutically as a platform to encode protein sequences, provide innate pro-inflammatory signals to the immune system (such as those denoting viral infection), control the expression of other RNAs (including key immunosuppressive factors) post-transcriptionally and conform structural scaffoldings binding proteins that control immune cells by modifying their function. Nascent RNA immunotherapeutics include RNA vaccines encoding cancer neoantigens, mRNAs encoding immunomodulatory factors, viral RNA analogues, interference RNAs and protein-binding RNA aptamers. These approaches are already in early clinical development with promising safety and efficacy results.

Original publication

DOI

10.1038/nrd.2018.132

Type

Journal article

Journal

Nature reviews. Drug discovery

Publication Date

10/2018

Volume

17

Pages

751 - 767

Addresses

Molecular Therapeutics Program, Center for Applied Medical Research, CIMA and IDISNA, Pamplona, Spain.

Keywords

Animals, Humans, Neoplasms, RNA, Cancer Vaccines, Immunotherapy, RNA Interference, Immunomodulation