Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BackgroundThe use of circulating cDC1 to generate anti-cancer vaccines is among the most promising approaches to overcome the limited immunogenicity and clinical efficacy of monocyte-derived DC. However, the recurrent lymphopenia and the reduction of DC numbers and functionality in patients with cancer may represent an important limitation of such approach. In patients with ovarian cancer (OvC) that had received chemotherapy, we previously showed that cDC1 frequency and function were reduced.MethodsWe recruited healthy donors (HD, n=7) and patients with OvC at diagnosis and undergoing interval debulking surgery (IDS, n=6), primary debulking surgery (PDS, n=6) or at relapse (n=8). We characterized longitudinally phenotypic and functional properties of peripheral DC subsets by multiparametric flow cytometry.ResultsWe show that the frequency of cDC1 and the total CD141+ DC capacity to take up antigen are not reduced at the diagnosis, while their TLR3 responsiveness is partially impaired in comparison with HD. Chemotherapy causes cDC1 depletion and increase in cDC2 frequency, but mainly in patients belonging to the PDS group, while in the IDS group both total lymphocytes and cDC1 are preserved. The capacity of total CD141+ DC and cDC2 to take up antigen is not impacted by chemotherapy, while the activation capacity upon Poly(I:C) (TLR3L) stimulation is further decreased.ConclusionsOur study provides new information about the impact of chemotherapy on the immune system of patients with OvC and sheds a new light on the importance of considering timing with respect to chemotherapy when designing new vaccination strategies that aim at withdrawing or targeting specific DC subsets.

Original publication

DOI

10.3389/fimmu.2023.1119371

Type

Journal article

Journal

Frontiers in immunology

Publication Date

01/2023

Volume

14

Addresses

Department of Oncology, Centre Hospitalier Universitaire Vaudois and Lausanne University Hospital, Lausanne, Switzerland.

Keywords

Dendritic Cells, Monocytes, Humans, Ovarian Neoplasms, Neoplasm Recurrence, Local, Immunotherapy, Female