Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Predicting recurrence in low-grade, early-stage endometrial cancer (EC) is both challenging and clinically relevant. We present a weakly-supervised deep learning framework, NaroNet, that can learn, without manual expert annotation, the complex tumor-immune interrelations at three levels: local phenotypes, cellular neighborhoods, and tissue areas. It uses multiplexed immunofluorescence for the simultaneous visualization and quantification of CD68 + macrophages, CD8 + T cells, FOXP3 + regulatory T cells, PD-L1/PD-1 protein expression, and tumor cells. We used 489 tumor cores from 250 patients to train a multilevel deep-learning model to predict tumor recurrence. Using a tenfold cross-validation strategy, our model achieved an area under the curve of 0.90 with a 95% confidence interval of 0.83-0.95. Our model predictions resulted in concordance for 96,8% of cases (κ = 0.88). This method could accurately assess the risk of recurrence in EC, outperforming current prognostic factors, including molecular subtyping.

Original publication

DOI

10.1038/s41746-023-00795-x

Type

Journal article

Journal

NPJ digital medicine

Publication Date

03/2023

Volume

6

Addresses

Program of Solid Tumors and Biomarkers, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.