Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Lymphocytes and myeloid cells sense hypoxia by the hypoxia-inducible factor (HIF) transcriptional system and via other molecular mechanisms. Low O2 availability is a hallmark of most solid tumors in which infiltrating leukocytes experience severe hypoxia once away from nurturing blood vessels. HIF controls migration, differentiation, and effector functions on immune cells. Importantly, in the tumor microenvironment the hypoxia response modulates the expression levels for important molecular targets in immunotherapy such as CD137, OX-40, FOXP3, and PD-L1. Modulation by hypoxia of tumor-associated macrophages, myeloid-derived suppressor cells, and dendritic cells ought to play an important underexplored role in modulating tumor immunity. Overall, low O2 seems to invigorate some anti-tumor effector T-cell functions while conflictingly favoring T-regulatory cells (Tregs) in terms of their differentiation, suppressive functions, and recruitment. Hypoxia also has been shown to uphold myeloid cell-mediated tumor-promoting inflammation and the immunosuppressive functions of tumor-associated macrophages. Detailed research of this intricate and poorly understood balance is warranted to improve the outcome of cancer immunotherapy.

Original publication

DOI

10.1053/j.seminoncol.2015.02.009

Type

Journal article

Journal

Seminars in oncology

Publication Date

06/2015

Volume

42

Pages

378 - 386

Addresses

Oncology and Immunology Department, CIMA, Pamplona, Spain.

Keywords

Dendritic Cells, Killer Cells, Natural, T-Lymphocytes, Animals, Humans, Neoplasms, Cell Hypoxia, Immunity, Innate, Adaptive Immunity, Tumor Microenvironment