Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

ObjectivesThe HIV-1 Nef protein selectively downregulates human leukocyte antigen (HLA)-A and HLA-B but not HLA-C molecules on the surface of infected cells. This allows HIV-infected cells to evade recognition by most cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells. We investigated the recognition of an HLA-Cw4-restricted HIV-1 gp120 epitope SFNCGGEFF (SF9) and its variant SFNCGGEFL (SL9) by T cells and NK receptors.Design and methodRecognition of HIV-1 gp120 peptides (SF9 and SL9) by T-cell clones was measured by staining with HLA-Cw4-peptide tetrameric complexes and cytolytic assays using target cell pulsed with either peptides. KIR2DL1 binding to these two peptides was measured using surface plasmon resonance and tetramer staining of an NK cell line.Result: CTLs could recognize SF9 better than the variant SL9, as shown by both tetramer staining and cytolytic assays. Intriguingly, an HLA-Cw4 tetramer folded with the 'escape' variant SL9 could bind to KIR2DL1 on NK cell lines with higher affinity than HLA-Cw4-SF9. The binding of KIR2DL1 to its ligand results in inhibition of NK cell function. Our results indicate that the HIV-1 gp120 variant peptide SL9 could potentially escape both from NK cell and CTL recognition by increasing its affinity for KIR2DL1 binding.ConclusionThese data suggest that HIV-1 can acquire mutations that are capable of escaping from both CTL and NK cell recognition, a phenomenon we have termed 'double escape'.

Original publication

DOI

10.1097/qad.0b013e32831fb55a

Type

Journal article

Journal

AIDS (London, England)

Publication Date

01/2009

Volume

23

Pages

189 - 193

Addresses

Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.

Keywords

Killer Cells, Natural, T-Lymphocytes, Cytotoxic, Cell Line, Humans, HIV-1, HIV Envelope Protein gp120, HLA-C Antigens, Cytotoxicity Tests, Immunologic, Antigen-Antibody Reactions, Antibody Affinity, Cytotoxicity, Immunologic, Immune Tolerance, Receptors, KIR2DL1